Category Archives: VMware Cloud on AWS

Watch a Failover from Direct Connect to Backup VPN for VMware Cloud on AWS

This post demonstrates a simulated failure of Amazon Direct Connect, with VMware Cloud (VMC) on Amazon Web Services (AWS). In this setup the standby VPN has been configured to provide connectivity in the event of a Direct Connect failure. The environment consists of a 6 host stretched cluster in the eu-west-2 (London) region, across Availability Zones eu-west-2a and eu-west-2b.

In this instance a pair of hosted private Virtual Interfaces (VIFs) are provided by a Cloud Connect service from a single third party provider. A Route-Based VPN has been configured. Direct Connect with VPN as standby was introduced in SDDC v1.7. For more information see Nico Vibert’s post here.

AWS Direct Connect: “Using AWS Direct Connect, you can establish private connectivity between AWS and your datacenter, office, or colocation environment, which in many cases can reduce your network costs, increase bandwidth throughput, and provide a more consistent network experience than Internet-based connections.”

AWS VPN: “AWS Virtual Private Network (AWS VPN) lets you establish a secure and private tunnel from your network or device to the AWS global network.”

DX_VPN_Setup

Direct Connect Outage

Before beginning it is worth re-iterating that the following screenshots do not represent a process. Providing the backup VPN is configured correctly then the customer / consumer of the service does not need to intervene; in the event of a real world outage everything highlighted below happens automatically. You may also want to review further reading: How to Deploy and Configure VMware Cloud on AWS (Part 1), How to Migrate VMware Virtual Machines to VMware Cloud on AWS (Part 2), plus additional demo posts: Watch VMware vSphere HA Recover Virtual Machines Across AWS Availability Zones and Watch a Virtual Machine Live Migration to VMware Cloud on AWS.

Taking down the primary and secondary VIFs was carried out by the hosting third party, to help with providing evidence of network resilience. When we start out in this particular environment the VIFs are attached and available. Servers in VMware Cloud are contactable from on-premise across the Direct Connect. The backup VPN is enabled.

DX_VPN_1DX_VPN_2

Following disabling of the interfaces by our third party provider the BGP status changes to down, along with the Direct Connect status for both VIFs.

DX_VPN_3DX_VPN_5

This is confirmed in the AWS console as both the BGP status and therefore the VIF state are down.

DX_VPN_4

With the Direct Connect down routes are redistributed using the backup VPN. The Direct Connect BGP hold timer is 90 seconds and the BGP keep alive is 30 seconds. After 90 seconds the VIF(s) BGP hold time expires and traffic starts to flow through the VPN connection.

In the screenshot below you can see an on-premise monitoring solution reporting on a server hosted in VMware Cloud on AWS. The server is available over the Direct Connect, drops, and is then available over the backup VPN after we disable the interfaces to simulate a failure. The test was conducted twice.

VPN_Monitor

Planning Your VMware Cloud on AWS Deployment

This post pulls together the notes I have made during the planning of VMware Cloud (VMC) on AWS (Amazon Web Services) deployment, and migrations of virtual machines from traditional on-premise vSphere infrastructure. It is intended as a generic list of considerations and useful links, and is not a comprehensive guide. Cloud, more-so than traditional infrastructure, is constantly changing. Features are implemented regularly and transparently so always validate against official documentation. This post was last updated on August 6th 2019.

esxsi.com

This post pulls together the notes I have made during the planning of VMware Cloud (VMC) on AWS (Amazon Web Services) deployment, and migrations of virtual machines from traditional on-premise vSphere infrastructure. It is intended as a generic list of considerations and useful links, and is not a comprehensive guide. Cloud, more-so than traditional infrastructure, is constantly changing. Features are implemented regularly and transparently so always validate against official documentation. This post was last updated on August 6th 2019.

Part 1: SDDC Deployment

1. Capacity Planning

You can still use existing tools or methods for basic capacity planning, you should also consult the VMware Cloud on AWS Sizer and TCO Calculator provided by VMware. There is a What-If Analysis built into both vRealize Business and vRealize Operations, which is similar to the sizer tool and can also help with cost comparisons. Additional key considerations are:

  • Egress costs are now a thing! Use vRealize Network Insight to understand…

View original post 1,711 more words

How VMware is Accelerating NHS Cloud Adoption

This post provides an overview of how the UK National Health Service (NHS) can unlock the benefits of cloud computing with VMware Cloud (VMC) on Amazon Web Services (AWS).

Part 1: How VMware is Accelerating NHS Cloud Adoption

Part 2: Bridging the Gap Between NHS and Public Cloud with VMware Cloud on AWS

In November 2014 the National Information Board and Department of Health and Social Care published the Personalised Health Care 2020 paper, outlining a framework to support the NHS with making better use of data and technology to improve health and care services. The paper endorsed the use of digital cloud services, backing the UK Government cloud first strategy, introduced in 2013. In January 2018 NHS Digital released guidance for NHS and social care data: off-shoring and the use of public cloud services, along with a toolset for identifying and assessing data risk classification. The NHS and social care data: off-shoring and the use of public cloud services guidance paper published by NHS Digital states; ‘NHS and social care organisations can safely put health and care data, including non-personal data and confidential patient information, into the public cloud’. The NHS and social care providers may use cloud computing services for NHS data, providing it is hosted in the UK, or European Economic Area (EEA), or in the US where covered by Privacy Shield.

The Information Governance (IG) report for Amazon Web Services was updated in 2018, the score approves Amazon Web Services to host and process NHS patient data. VMware Cloud on AWS leverages Amazon’s infrastructure to provide an integrated cloud offering, delivering a highly scaleable and secure solution for NHS trusts and other organisations to migrate workloads and extend their on-premise infrastructure. Steps for understanding the data type, assessing migration risks, and implementing and monitoring data protection controls are also included in the documentation linked above. Each individual data controller organisation is responsible for implementing and reviewing their own processes around data risk classifications, however to assist NHS Digital have provided a consistent health and social care data risk model. For organisations that do not yet have cloud governance in place NHS Digital have also provided guidance on the health and social care cloud risk framework.

Cloud services introduce a shared security model. NHS organisations can be compliant by implementing a cloud risk framework and proportionate controls outlined by NHS Digital; summarised in the health and social care cloud security one page overview. Security considerations for different data classifications are detailed in the health and social care cloud security – good practice guide.

The NHS can implement Secure by Design services with VMware Cloud on AWS

  • NHS organisations must be aware of the shared security model that exists between: VMware; delivering the service, Amazon Web Services (the IaaS provider); delivering the underlying infrastructure, and customers; consuming the service.
  • The NHS organisation is in complete control of the location of its data. VMware do not backup or archive customer data and therefore it is up to the NHS organisation to implement this functionality.
  • Micro-segmentation can be used to protect applications by ring-fencing virtual machines in a zero trust architecture. The risks of legacy operating systems can be mitigated by isolating them from the rest of the network. Micro-segmentation is included for all virtual machines in the default VMware on AWS pricing model.
  • NHS organisations can use Role Based Access Control (RBAC) and Multi-Factor Authentication (MFA) to control access to cloud resources. NHS organisations are in control of inbound and outbound firewall rules and can opt to route all traffic internally on private addressing.
  • VMware Cloud on AWS meets a number of security standards such as NIST, ISO, and CIS. Standard Amazon policies for physical security and secure disposal apply. Amazon use self-encrypting disks and manage the keys using Amazon Key Management Service (KMS).
  • VMware implement a number of stringent security controls, for example MFA generated time-based credentials for support staff; all logged and monitored by a Security Operations Centre (SOC), VSAN based encryption, and industry-leading commercial solutions to secure, store, and control access to tokens, secrets, passwords, etc. Full details can be found in the VMware Cloud Services on AWS Security Overview.

Additional benefits of VMware Cloud on AWS to the wider NHS, are as follows:

  • The NHS can save time and money by reducing physical or data centre footprint

    • NHS Digital reached an agreement in May 2019 to offer other NHS organisations discounted access to cloud services, such as favourable VMware on AWS pricing, to help accelerate their journey to the cloud. In addition, a favourable pricing structure is in place for reserved instances should organisations commit for 1 or 3 years.
    • Commissioning new space in a data centre, or even just new hardware, can be a lengthy process. With VMware Cloud an entire virtual data centre can be deployed in around 90 minutes. Extending capacity on demand takes as little as 15 minutes.
  • The NHS can protect existing investments and move to the cloud

    • Existing VMware Virtual Machines (VMs) can be migrated to VMware Cloud on AWS, and back if needed, in minutes without the need to refactor applications.
    • NHS technical staff continue to use the same tools and management capabilities that they currently use day to day.
    • In most cases where products such as Monitoring, Backups, and Anti-Virus, are licensed per physical host or per number of VMs organisations can adopt a Bring Your Own Licensing (BYOL) approach.
  • The NHS can improve service performance and availability

    • VSAN replication and stretched networks can enhance Disaster Recover (DR) capabilities. The Stretched-Cluster deployment provides vSphere High Availability (HA) across 2 Amazon Availability Zones within a region with a 99.99% availability commitment. Additional DR services such as Site Recovery Manager (SRM) add-ons are also available.
    • In many cases replacing aging servers and storage infrastructure with the latest hardware and flash based VSAN can yield significant application performance benefits.
    • Physical host capacity can be scaled out dynamically and then back in when it is no longer required. NHS organisations can take advantage of easily spinning up environments to test or develop without having to manually install and configure additional hardware.
  • The NHS has private access to native AWS services

    • VMware Cloud on AWS has a private link into Amazon’s backbone network of services, ranging from storage, database, and network services, to Internet of Things (IoT), Artificial Intelligence (AI) and Machine Learning. Developers can take advantage of various managed container services, or serverless platforms.
    • Since VMware Cloud resides in Amazon’s data centres hybrid configurations can be securely implemented, for example using Amazon’s Elastic Load Balancer with the back end servers in VMC, or Amazon’s Relational Database Service with the application servers in VMC.
  • NHS technical staff will have more time to proactively make improvements to systems and processes

    • Hardware maintenance such as firmware updates, failure remediation, and upgrades are all handled by VMware, as are software updates to the hypervisor and infrastructure management layer.
    • NHS technical staff are responsible for securing applications inside the virtual machine, e.g. operating system updates and firewall configuration, ensuring that Amazon Secure by Design best practises are followed.

In summary VMware Cloud on AWS enables NHS organisations to seamlessly extend or migrate data centre workloads to the cloud, whilst enhancing security and availability options. In the example shown below an existing VMware vSphere environment has been extended to VMware Cloud on AWS, giving organisations the flexibility to run their workloads on the most suited platform. This approach is secure and easy for operational teams who may not yet have an established cloud governance process in place.

Additional notes on this design: The Internet Gateway for VMC is not in use, all routes are advertised internally and controlled using on-premise firewalls, in other words all ingress and egress traffic is via the on-premise data centres. Access to native AWS services uses the 25Gbps Elastic Network Interfaces (ENI) and is secured using the gateway firewall and Amazon Security Groups.

NHS_SDDC

Further Reading: How to Deploy and Configure VMware Cloud on AWS (Part 1), How to Migrate VMware Virtual Machines to VMware Cloud on AWS (Part 2).

VMware Cloud on AWS FAQs | Resources | Documentation | Factbook | Evaluation Guide | On-Boarding Handbook | Operating Principles