Veeam Integration with vRA Part 2: Restore

In this 2 part series we will walk through integrating Veeam with vRealize Automation and vRealize Orchestrator. Part 1 focused on giving users the ability to add virtual machines to existing Veeam backup jobs from within the vRA self-service portal. In Part 2 we will add the ability to restore virtual machines from a list of available restore points in vRA. The versions used are Veeam 9.5 and vRA 7.2 / 7.3.

The steps outlined below assume that you have already installed and configured Veeam Backup and Replication, and vRealize Automation with either embedded or external vRealize Orchestrator instance, as well as having a basic knowledge of both areas. The following process and the sample workflows we will import are not endorsed by, or supported by Veeam. Finally, Veeam Enterprise Manager is required to use Veeam RESTful API. For further reading material see the Veeam RESTful API Reference here. Alternative sample workflows and reading provided by The IT Hollow here, and another useful article by vRatpack here with vRA 6.2.

Add the REST Host

If you have already added your Veeam backup server as a REST host in part 1 then skip this step. Otherwise, open the vRealize Orchestrator client and log in as an administrator, change the view to Design from the drop down menu. The first thing we will do is add the Veeam server as a REST host. From the Workflows tab expand Library, HTTP-REST, Configuration.

REST_host_1

Right click Add a REST host and click Start workflow. Enter the name and URL of the Veeam server, the default URL uses port 9399, for example http://VeeamServer:9399. Review the default options and click Next.

REST_host_2

Configure the host authentication options as required. Here I have used Basic authentication, and entered the credentials for a service account with administrative access to Veeam.

REST_host_3

Configure proxy and advanced settings if required, then click Submit. The workflow will run and add the Veeam server as a REST host. There are also Update a REST host, and Remove a REST host, workflows if you want to make any changes. Existing REST hosts can be viewed from the inventory tab under expand HTTP-REST.

Import the Sample Workflows

If you have already imported the sample workflows in part 1 then skip this step. In this example I am using sample workflows provided here, again these are not supported by Veeam. Download and extract the ZIP file to a location accessible from the vRO client. Change to the packages tab and click the Import Package icon. When prompted browse to the downloaded package file and click Import.

Veeam_Package_1

Ensure all the required elements are included and click Import selected elements.

Veeam_Package_2

We have now imported the backup workflow and action, and the restore workflow and action. The final element is a settings file which we will use to determine the REST host. Open the configurations tab and expand Library, Veeam. Click the Settings file and the pencil icon to edit. Select Attributes and locate the restHost attribute, click the Not set value and expand HTTP-REST, select the Veeam server we added earlier from the list of REST hosts and click Select. Click Save and close. The value of the restHost attribute should now be the Veeam backup server.

The restore jobs users select from are pulled using the getVMRestorePoints action under com.veeam.library in the actions tab. If you want to examine the workflow in more detail go to the workflows tab and expand Library, Veeam. Select the Restore VM workflow and go through the tabs in the right hand pane. From the General tab you can see the restHost attribute is using the settings configuration file we have just configured. The Inputs for the workflow are Date (the Veeam restore point) and vmObj (virtual machine name). Under the Schema tab you can view the Scripting task which is making the API calls.

Restore_VM

Update Sample Script

If you are using the sample script referenced in this post then there are further steps required to fix the date formatting with later versions of Veeam. If you are using alternative or custom workflows then the following is not required.

  • Edit the Restore VM workflow, open the Schema tab and click the Find Restore Point script. Update the date and time format on line 25 to: var rpDateLocale = System.getDateFromFormat(restorePointNodes.item(i).getElementsByTagName(“CreationTimeUTC”).item(0).textContent,”yyyy-MM-dd’T’HH:mm:ss.sss’Z'”).toLocaleString();

Find_Restore_Point_OldFind_Restore_Point_New

  • Edit the getVMRestorePoints action, open the Scripting tab. Update the date and time format on line 26 to: var rpDateLocale = System.getDateFromFormat(restorePointNodes.item(i).getElementsByTagName(“CreationTimeUTC”).item(0).textContent + ” UTC”,”yyyy-MM-dd’T’HH:mm:ss.sss’Z’ ZZZ”).toLocaleString();

Restore_Point_Action_OldRestore_Point_Action_New

  • You can test the API calls are successfully bringing back restore points by running the workflow in vRO and selecting a virtual machine, a list of available restore points should be displayed.

Run_vRO

vRA Integration

The final step is to hook the vRO workflow into vRA. Log into the vRealize Automation portal as a user with service architect permissions. From the Design tab select XaaS and Resource Actions. Any existing resource actions are listed. Click New.

Existing_Resource

Map the resource action to the relevant vRO workflow. In this case we need to expand Library, Veeam and select the Restore VM workflow. Click Next.

Restore_VM_Resource

The input mappings should already be populated; the resource type is IaaS VC Virtual Machine, the input parameter matches up with the parameter configured in the vRO workflow (vmObj which passes the virtual machine name), and this maps to the VC:VirtualMachine orchestrator type.

Restore_VM_Input

Accept the default values for the resource action form and click Finish.

Restore_VM_Form

The new resource action is now listed as a draft. To start using the action select it and click Publish.

New_Resource

Now select the Administration tab and Catalog Management. Open the Actions page, the new resource action we created should now be displayed.

If you want to change the icon of the resource action you can do so by selection the action and clicking Configure. There are a number of useful vRA icons available here, including sample icons for day 2 actions. Note for users of vRA 7.2 there is a known issue with changing the icon for custom actions, resolved in 7.3 as per this KB article.

Restore_VM_Action

The next step is to assign our custom action to an entitlement. Open the Entitlements page and select the relevant entitlement. Click the Items & Approvals tab, under Entitled Actions click the green plus symbol. Locate the new resource action and select the check box to add it to the entitled actions. Click Ok and Finish.

Restore_VM_Entitlement

To confirm the configuration has worked browse to the Items tab and select Machines. Any virtual machines that have the custom resource action added to the entitlement will show the new action in the drop-down Actions menu.

restore_vm_item

When selecting the new action I am presented with the action form as per the design canvas we saw earlier. In this example I select the restore point from the drop-down list that the getVMRestorePoints vRO action has pulled from the Veeam backup server, and click Submit.

restore_request

The virtual machine name is then passed through to the next stage of the workflow, along with the restore point ID. You can check the status of the job in vRA under the Requests tab, check the Restore VM workflow has run successfully in the vRO console, and check the restore task that will be running as normal in the Veeam Backup & Replication console.

_______________

Veeam Integration with vRA Part 1: Backup

Veeam Integration with vRA Part 2: Restore

Veeam Integration with vRA Part 1: Backup

In this 2 part series we will walk through integrating Veeam with vRealize Automation and vRealize Orchestrator. Part 1 will focus on giving users the ability to add virtual machines to existing Veeam backup jobs from within the vRA self-service portal. In Part 2 we will add the ability to restore virtual machines from a list of available restore points in vRA. The versions used are Veeam 9.5 and vRA 7.2 / 7.3.

The steps outlined below assume that you have already installed and configured Veeam Backup and Replication, and vRealize Automation with either embedded or external vRealize Orchestrator instance, as well as having a basic knowledge of both areas. The following process and the sample workflows we will import are not endorsed by, or supported by Veeam. Finally, Veeam Enterprise Manager is required to use Veeam RESTful API. For further reading material see the Veeam RESTful API Reference here. Alternative sample workflows and reading provided by The IT Hollow here, and another useful article by vRatpack here with vRA 6.2.

Add the REST Host

Open the vRealize Orchestrator client and log in as an administrator, change the view to Design from the drop down menu. The first thing we will do is add the Veeam server as a REST host. From the Workflows tab expand Library, HTTP-REST, Configuration.

REST_host_1

Right click Add a REST host and click Start workflow. Enter the name and URL of the Veeam server, the default URL uses port 9399, for example http://VeeamServer:9399. Review the default options and click Next.

REST_host_2

Configure the host authentication options as required. Here I have used Basic authentication, and entered the credentials for a service account with administrative access to Veeam.

REST_host_3

Configure proxy and advanced settings if required, then click Submit. The workflow will run and add the Veeam server as a REST host. There are also Update a REST host, and Remove a REST host, workflows if you want to make any changes. Existing REST hosts can be viewed from the inventory tab under expand HTTP-REST.

Import the Sample Workflows

In this example I am using sample workflows provided here, again these are not supported by Veeam. Download and extract the ZIP file to a location accessible from the vRO client. Change to the packages tab and click the Import Package icon. When prompted browse to the downloaded package file and click Import.

Veeam_Package_1

Ensure all the required elements are included and click Import selected elements.

Veeam_Package_2

We have now imported the backup workflow and action, and the restore workflow and action. The final element is a settings file which we will use to determine the REST host. Open the configurations tab and expand Library, Veeam. Click the Settings file and the pencil icon to edit. Select Attributes and locate the restHost attribute, click the Not set value and expand HTTP-REST, select the Veeam server we added earlier from the list of REST hosts and click Select. Click Save and close. The value of the restHost attribute should now be the Veeam backup server.

The backup jobs users select from are pulled using the getBackupJobs action under com.veeam.library in the actions tab. If you want to examine the workflow in more detail go to the workflows tab and expand Library, Veeam. Select Add VM to Backup Job and go through the tabs in the right hand pane. From the General tab you can see the restHost attribute is using the settings configuration file we have just configured. The Inputs for the workflow are jobname (Veeam backup job) and vmObj (virtual machine name). Under the Schema tab you can view the Scripting task which is making the API calls.

Add_VM

vRA Integration

The final step is to hook the vRO workflow into vRA. Log into the vRealize Automation portal as a user with service architect permissions. From the Design tab select XaaS and Resource Actions. Any existing resource actions are listed. Click New.

Existing_Resource

Map the resource action to the relevant vRO workflow. In this case we need to expand Library, Veeam and select the Add VM to Backup Job workflow.

Backup_VM_Resource

The input mappings should already be populated; the resource type is IaaS VC Virtual Machine, the input parameter matches up with the parameter configured in the vRO workflow (vmObj which passes the virtual machine name), and this maps to the VC:VirtualMachine orchestrator type.

Backup_VM_Input

Accept the default values for the resource action and click Finish.

Backup_VM_Form

The new resource action is now listed as a draft. To start using the action select it and click Publish.

vra6

Now select the Administration tab and Catalog Management. Open the Actions page, the new resource action we created should now be displayed.

If you want to change the icon of the resource action you can do so by selection the action and clicking Configure. There are a number of useful vRA icons available here, including sample icons for day 2 actions. Note for users of vRA 7.2 there is a known issue with changing the icon for custom actions, resolved in 7.3 as per this KB article.

vra7

The next step is to assign our custom action to an entitlement. Open the Entitlements page and select the relevant entitlement. Click the Items & Approvals tab, under Entitled Actions click the green plus symbol. Locate the new resource action and select the check box to add it to the entitled actions. Click Ok and Finish.

vra8

To confirm the configuration has worked browse to the Items tab and select Machines. Any virtual machines that have the custom resource action added to the entitlement will show the new action in the drop-down Actions menu.

vra9

When selecting the new action I am presented with the action form as per the design canvas we saw earlier. In this example I select the backup job from the drop-down list of jobs that the getBackupJobs vRO action has pulled from the Veeam backup server, and click Submit.

vra10

The virtual machine name is then passed through to the next stage of the workflow, which adds the virtual machine to the selected backup job. You can check the status of the job in vRA under the Requests tab, check the Add VM to Backup Job workflow has run successfully in the vRO console, and check the backup job itself has been updated using the Veeam Backup & Replication console.

_______________

Veeam Integration with vRA Part 1: Backup

Veeam Integration with vRA Part 2: Restore

Deploying an NSX Load Balancer with vRA

In this post we will walk through the process of deploying an NSX Load Balancer using vRealize Automation. We will also cover high availability and post deployment scaling. In order to take advantage of the direct NSX API integration with vRA you will need to be running at least v7.3, read more about the enhancements made in vRA 7.3 from the release notes or what’s new. In the example we’ll work towards multiple web servers are provisioned with an On-Demand Load Balancer, along with app servers and a database server. The On-Demand Load Balancer deploys an NSX edge for load balancing and adds the web servers as pool members. There are a number of available customisations which we’ll cover in the configuration process below.

Blueprint_2

Adding Endpoints

The following process assumes that you have a fully deployed vRA topology with all the components required to provision virtual machines; vCenter endpoint(s), reservations, compute resources, and a published catalog with entitlements. It would also be beneficial to have an understanding of using an NSX edge for load balancing or have deployed an edge manually to see the corresponding deployment options.

The first step is to add the NSX Manager as a vRA endpoint. From the Infrastructure tab select Endpoints and Endpoints again. Click New and select Networking and Security, NSX. Enter the details for the NSX Manager. Before adding the NSX endpoint we can create an association with the registered vCenter Server. From the Associations tab, click New. Select the vCenter Server from the dropdown, the platform type will auto-populate to vSphere and the description vSphere to NSX Association. Click Test Connection and then Ok to save the configuration.

NSX_Endpoint

Blueprint Modifications

After NSX has been added as an endpoint navigate to Blueprints under the Design tab. From the design canvas of a new or existing blueprint select Network & Security, drag and drop the On-Demand Load Balancer onto the canvas.

Blueprint_1

Click the On-Demand Load Balancer that has been added to the canvas. When the load balancer is provisioned in NSX the servers associated with the load balancer in the blueprint are automatically added as members in the pool. This is set in the Member field, in the example below the web servers in the blueprint are added as members of the load balancer.

Blueprint_3

The network for the member servers and the network for the VIP address are configured in the appropriate fields. Leave the IP address blank to automatically assign an IP address from the associated VIP network. Under Virtual servers click New, here you can configure the protocol settings for the load balancer, and the algorithm/persistence, health check, and connection settings by selecting Customize.

Customize_LB

Before saving the blueprint click the settings cog at the top of the page, this opens the blueprint properties. From the NSX Settings tab set the Transport zone to attach the load balancer to, this can be a local or universal transport zone. Next select the Edge and routed gateway reservation policy, this is the reservation policy (compute, storage) that will be used when provisioning the edge.

Blueprint_Properties_1

Click the Properties tab and select Custom Properties. There are a number of optional parameters we can add here.

  • NSX.Edge.ApplianceSize sets the appliance size of the edge, accepted values are compact, large, quadlarge and xlarge.
  • NSX.Edge.HighAvailability deploys the edge appliance in HA mode when the value is true. Without this property only a single appliance is deployed.
  • NSX.Edge.HighAvailability.PortGroup references the port group to use for the heartbeat network of the edge appliances deployed in HA mode.

Blueprint_Properties_2

Click Ok and Finish to save the blueprint. Make the blueprint available as a catalog item and request a test deployment. In vSphere you will see the edge and VMs being provisioned and, once complete, the virtual machines will be added as members in the load balacer pool. You can view the settings of the deployed edge in the vSphere web client under Networking & Security, NSX Edges, double click the edge and select Load Balancer.

NSX_Load_Balancer

Post Deployment

When the deployment is destroyed the edge appliances are removed along with the VMs as part of the cleanup process. If the deployment is scaled out then the new server is added as a member to the existing load balancer pool, likewise if the deployment is scaled in then the server deleted is also removed from the pool.

Scale_Out

The scale in and scale out actions are assigned as entitled actions from within the relevant entitlement  Aswell as having the permissions to perform the scale actions the blueprint must also contain a higher number of maximum instances. In the example below 2 web servers will be deployed with an On-Demand Load Balancer, as the maximum number of instances is set to 10 the requester can scale out the number of web servers and pool members to a maximum of 10 servers.

Blueprint_Scale

Configuring vRealize Automation with vRealize Log Insight

In this post we will walk through integrating vRealize Automation with vRealize Log Insight to monitor and collect events for the vRA management stack. The following example we will be based on vRealize 7.3 with Log Insight 4.5, but the process has been validated with vRealize 7.x and Log Insight 4.x. If you do not already have Log Insight installed see the vRealize Log Insight Install Guide, if you are also using NSX see the NSX with Log Insight Integration Guide.

The configuration process consists of installing the management pack for Log Insight, installing the Log Insight agent on the Windows components, configuring the built-in Log Insight agent on the vRealize Automation appliances, and creating Log Insight templates and filters to gather the required information.

Management Pack Installation

Browse to the IP address or FQDN of the Log Insight instance and log in using the admin account. From the drop-down menu in the top right select Content Packs and Marketplace. Locate VMware – vRA 7 and click Install.

mp1

The management pack is now installed, review the Setup Instructions and click Ok.

mp2

Log Insight Agent Installation

From the drop-down menu in the top right again, select Administration. Under Management open the Agents page.

agents1

Select Download Log Insight Agent. Select the Windows MSI and copy the file to the Windows servers in the vRA management stack, in this case the IaaS Web and Manager servers, DEM, and Agent servers.

  • Right click and Install the file.
  • Accept the license terms and click Next.
  • Confirm the Log Insight server is auto-populated and click Next.
  • The install will now run. Click Finish once complete.

Go back to the Agents page in the Log Insight web interface. You should see the servers start populating the detected agents table. Next we’ll configure the built-in Log Insight agent on the vRA appliances. If you need to re-install or upgrade the built-in agent see this KB.

Open an SSH connection to the vRA appliance using an SSH client such as Putty. If SSH is not enabled on the appliance you can configure this by browsing to https://yourappliance:5480 and enabling SSH under the Admin tab.

Browse to the correct location cd /etc

View the liagent configuration file more liagent.ini

Edit the file, press the insert key to start typing vi liagent.ini

Remove the semi-colon that is commenting out the hostname, protocol, and port lines. Enter the hostname of the Log Insight instance, leave the protocol and ports with the default settings. To save and exit the file use :wq

Restart the Log Insight service service liagentd restart

edit

Log Insight Configuration

Log back in to the Log Insight web UI. Now that the agents are all installed or configured you should see the corresponding servers populating the agents table under Administration, Management, Agents.

agents

Click the drop-down arrow next to All Agents. Locate the vRealize Automation 7 – Windows template and click Copy Template. In the filter field add the Windows servers running vRA components with the Log Insight agent installed. Scroll down to the Agent Configuration and review the build settings if you want to configure specific event collections or if you need to change the default install path for vRA. Click Save New Group.

agentconfig

Locate the vRealize Automation 7 – Linux template and click Copy Template. Repeat the process this time adding the vRA appliances to the configuration. Once complete you should have templates configured to monitor all servers in the vRA management stack.

templates

Go back to Dashboards. Under VMware – vRA 7 you will start to see events being collected by Log Insight.

dashboard

Removing a vCenter Endpoint from vRA 7.x

This post will walk through the process of removing a vCenter Endpoint from vRA 7.3. Before beginning it is a good idea to take a backup of the vRA database, and snapshot the vRA management stack. Ensure there are no existing virtual machines provisioned to the vCenter Endpoint we are removing. A reservation cannot be removed while virtual machines are assigned to it. Log into the vRA tenant web portal. You can check existing virtual machines from the Infrastructure tab under Managed Machines using the Reservation filter. Still on the Infrastructure tab, from the navigation pane on the left hand side select Reservations, Reservations. Select and Delete any reservations using compute resources associated with the vCenter Endpoint.

The next step is to remove the compute resources. Download the vRealize CloudClient here, at the time of writing the latest version is 4.4.0. Extract the contents to a Windows machine with access to the vRA management stack. In this example I am using one of the IaaS web servers. From an elevated command prompt run the VMware_vRealize_CloudClient-4.4.0-5511232\bin\cloudclient.bat file and accept the EULA. The first thing we will do for ease of use is to create an auto login file using login autologinfile and close down Cloud Client.

CloudClient

In the root directory of the extracted folder a file is created called CloudClient.properties. Open the file with notepad and enter the FQDN or IP address of the vRA appliance and IaaS load balance name in the appropriate fields, along with administrator credentials for both.

CloudClientLogin

Open back up the VMware_vRealize_CloudClient-4.4.0-5511232\bin\cloudclient.bat file in an elevated command prompt, by default the auto login file will be used. Accept any certificate warnings when prompted.

When using Cloud Client you can tab out to see available commands. We’ll need the following:

vra computeresource list displays a list of compute resources

vra computeresource inactive list displays a list of inactive compute resources

CloudClient1

At this stage before actually deleting the compute resources we need to stop the VMware vCloud Automation Center Agent service on the vRA Agent servers.

vra computeresource inactive remove removes the listed inactive compute resources

continue confirms deletion of the compute resources

agents stopped confirms agents are stopped, at this point the compute resources will be removed

CloudClient2

Go back into the vRA tenant web UI, from the Infrastructure tab check in Compute Resources, or Endpoints, Fabric Groups. Click the fabric group previously containing the compute resources, they have now been removed.

The final step is to remove the endpoint, this can be done in the web UI under Infrastructure, Endpoints, Endpoints. Select the endpoint and click Delete. Alternatively the endpoint can be removed from Cloud Client using vra endpoint remove --id <endpoint> where <endpoint> is the endpoint name. Remember to remove the CloudClient.properties auto login file.

Adding Custom Resource Actions for vRA 7.x

This post will walk through adding a resource action for vRealize Automation 7.x, mapped to a custom vRO workflow. The steps below assume that the vRO instance has been integrated with vRA.

Log into the vRealize Automation portal as a user with service architect permissions. From the Design tab select XaaS and Resource Actions. Any existing resource actions are listed. Click New.

vra1

Map the resource action to the relevant vRO workflow. In this example I am using a workflow that adds a virtual machine to a backup job. You can use any workflow that has been configured to accept an input parameter from a vRA item. For this particular case we are using the VC:VirtualMachine parameter which passes the virtual machine provisioned by vRA.

vra2

If not already populated select the relevant input mappings. In this case the resource type is IaaS VC Virtual Machine, the input parameter matches up with the parameter configured in the vRO workflow (whatever you have named it, vmObj here), and this maps to the VC:VirtualMachine orchestrator type.

If your vRO parameter does not have a corresponding mapping already in vRA or ready to be imported into vRA then you can create a new / custom resource mapping in the Resource Mappings page.

vra3

Enter a name and description for the resource action. Configure the remaining settings as appropriate, you have the option to set a provisioning or disposal type (leave blank if neither) and have the action always available or only when a certain criteria is met.

If you un-select the hide catalog request information page the user is prompted for a description and reason for requesting the resource action.

vra11

Once you have completed the details page click Next.

vra4

Edit the form to represent how you want the action to be displayed to users. Most of this configuration should be obtained from the vRO workflow so you may not need to make changes here. Click Finish.

vra5

The new resource action is now listed as a draft. To start using the action select it and click Publish.

vra6

Now select the Administration tab and Catalog Management. Open the Actions page, the new resource action we created should now be displayed.

If you want to change the icon of the resource action you can do so by selection the action and clicking Configure. There are a number of useful vRA icons available here, including sample icons for day 2 actions. In my example I am unable to update the icon which seems to be an issue with custom actions created in vRA 7.2; resolved in 7.3 as per this KB article.

vra7

The next step is to assign our custom action to an entitlement. Open the Entitlements page and select the relevant entitlement. Click the Items & Approvals tab, under Entitled Actions click the green plus symbol. Locate the new resource action and select the check box to add it to the entitled actions. Click Ok and Finish.

vra8

To confirm the configuration has worked browse to the Items tab and select Machines. Any virtual machines that have the custom resource action added to the entitlement will show the new action in the drop-down Actions menu.

vra9

When I select the new action I am presented with the action form as per the design canvas we saw earlier. In this example I select the backup job from the drop-down list of jobs that my vRO workflow has pulled from the backup server, and click Submit. The VC:VirtualMachine parameter is then passed through to the next stage of the workflow, which adds machine to the selected backup job.

vra10

VMware vRealize Business for Cloud Install

VMware vRealize Business for Cloud provides automated cost analysis and consumption metering; allowing administrators to make workload placement decisions between private and pulic clouds based on cost and available services. Furthermore infrastructure stakeholders have full visibility of virtual machine provisioning costs and are able to accurately manage capital expenditure and operating expenditure. For more information see the vRealize Business product page, you can try vRealize Business for Cloud using the Hands on Labs available here.

This post will walk through the installation of vRealize Business for Cloud 7.3; we’ll be provisioning to a vSphere environment running vRealize Automation 7.3. Each vRealize Business instance scales up to 20,000 virtual machines and 10 vCenter Servers, remote data collectors can be deployed to distributed geographical sites. vRealize Business is deployed in OVA format as a virtual appliance, you should ensure this appliance is backed up appropriately. There is no built in HA or DR functionality within vRealize Business, but you can take advantage of VMware components such as High Availability, Fault Tolerance, or Site Recovery Manager. Logs can be output to a syslog server such as vRealize Log Insight.

vRB_Launchpad

Requirements

  • vRealize Business for Cloud must be deployed to an ESXi host, and can be used to mange vCenter Server, vCloud Director, vCloud Air, vRealize Automation, and vRealize Operations Manager.
  • vRB 7.3 is compatible with vCenter and ESXi versions 5.5 through to 6.5, and vRealize Automation verisons 6.2.4 through to 7.3 (latest versions at the time of writing).
  • For compatibilty with other VMware products see the VMware Product Interoperability Matrix.
  • The vRB appliance requires 8 GB memory, 4 vCPU and 50 GB disk (thick provisioned).
  • If you use any remote data collectors the memory on these appliances can be reduced to 2 GB.
  • vRealize Business for Cloud is licensed as part of the vRealize suite, per CPU, or in packs of 25-OSI.
  • There are 2 available editions; standard and advanced. Features such as public cloud costing require the advanced version, for more information see the feature comparison section of the product page.
  • The web UI can be accessed from IE 10 or later, Chrome 36.x or later, and Firefox 31.x and later.
  • Time synchronization and name resolution should be in place across all VMware components.
  • For a full list of pre-requisites including port requirements see here.

Before beginning review the following VMware links:

Installing vRB

Download the VMware vRealize Business for Cloud 7.3 OVA file here. Log into the vSphere web client and right click the datastore, cluster, or host where you want to deploy the virtual appliance. Select Deploy OVF Template and browse to the location of the OVA file.

  • Enter a name for the virtual appliance and select the deployment location, click Next.
  • Confirm the compute resource and click Next.
  • Review the details of the OVF template and click Next.
  • Accept the end user license agreement and click Next.
  • Select the storage for the virtual appliance, ensure the virtual disk format is set to Thick provision eager zeroed, and click Next.
  • Select the network to attach to the virtual appliance and click Next.
  • Set the Currency, note that at this time the currency cannot be changed after deployment. Ensure Enable Server is checked, select or de-select SSH and the customer experience improvement program based on your own preferences. Configure a Root user password for the virtual appliance and enter the network settings for the virtual appliance in the Networking Properties fields.
  • Click Next and review the summary page. Click Finish to deploy the virtual appliance.

Once the virtual appliance has been deployed and powered on open a web browser to https://vRB:5480, where vRB is the IP address or FQDN of the appliance. Log in with the root account configured during setup.

vRB_Mgmt

Verify the settings under AdministrationTime Settings, and Network. At this stage the appliance is ready to be registered with a cloud solution. In this example I will be using vRealize Automation, for other products or further information see the install guide referenced above. Return to the Registration tab and ensure vRA is selected.

vRB_Register

Enter the host name or IP address of the vRA appliance or load balancer. Enter the name of the vRA default tenant and the default tenant administrator username and password. Select Accept vRealize Automation certificate and click Register.

Accessing vRB

vRealize Business for Cloud can be integrated into vRealize Automation, or you can enable stand-alone access. To access vRB after integrating with vRA log into the vRA portal. First open the Administration tab, select Directory Users and Computers, search for a user or group and assign the relevant business management roles. A user with a business management role has access to the Business Management tab in vRA.

vRB_Roles

Optional: to enable stand-alone access first enable SSH from the Administration tab. Use a client such as Putty to open an SSH connection to the virtual appliance, log in with the root account. Enter cd /usr/ITFM-Cloud/va-tools/bin to change directory, enter sh manage-local-user.sh and select the operation, in this case 5 to enable local authentication.

ssh

If you want to create new local users user option 1 and enter the username and password, when prompted for permissions VCBM_ALL provides administrator access and VCBM_VIEW read-only. You can also log in to the web UI with the root account, although it would be better practice to create a separate account.

Disable SSH from the Administration tab if required. Wait a few minutes for the services to restart and then browse to https://IP/itfm-cloud/login.html, where IP is the IP address of your appliance. If you try to access this URL without enabling stand-alone access you will receive a HTTP Status 401 – Authentication required error message.

vRB Configuration

We will continue with the configuration in the vRA portal, open the Administration tab and click Business Management.

vRB_Connections

Expand License Information, enter a license key and click Save. Expand Manage Private Cloud Connections, configure the required connections. In this example I have added multiple vCenter Server endpoints. Open the Business Management tab, the Launchpad will load.

vRB_Launchpad

Select Expenses, Private Cloud (vSphere) and click Edit Expenses. At this stage you will need the figures associated with hardware, storage, and licensing for the environment. You can also add costs for maintenance, labour, network, facilities, and any other additional costs.

vRB_Expenses_vSphere

Once vRB is populated with the new infrastructure costs utilisation and projected pricing will start to be updated. Consumption showback, what-if analysis, and public cloud comparisons can all be accessed from the navigation menu on the left hand side. For further guidance on getting the most out of vRB see the vRealize Business for Cloud User Guide.

vRB_Operational