Category Archives: VMware Other

How to Deploy VMware Horizon Cloud on Microsoft Azure

This post provides a high-level walkthrough of the VMware Horizon Cloud on Azure deployment, with some additional gotchas and insights. As with any cloud computing article features and functionality change quickly so multiple information sources should be used, some are listed in this article.

Introduction

VMware Horizon Cloud is a cloud-native virtual desktop platform that transforms an organisation’s digital workspace experience. Virtual desktops and applications can be accessed by end-users securely from any device, anywhere, with a cost-effective subscription-based model. Infrastructure administrators can deploy highly available and distributed environments consuming capacity from Microsoft Azure, VMware Cloud on AWS, or on-premises infrastructure. VMware Horizon Cloud can also be deployed to IBM Cloud. You can read more about the Horizon Cloud service offerings in the VMware Horizon Cloud Service Documentation.

Horizon on Azure allows customers to deploy Horizon Cloud as a VMware managed service using Infrastructure-as-a-Service (IaaS) from their own Microsoft Azure subscription. Horizon Cloud on Azure delivers virtual applications and dedicated or floating Windows 10 desktops, leveraging Azure cloud resources for multiple scalable deployment options. The Horizon Cloud admin console provides a single interface to manage virtual desktops and users with built-in service monitoring, logs, and analytics. You can see a full list of features in the VMware Horizon Cloud on Azure FAQs.

Example Design

AD Req

During pod deployment Horizon Cloud deploys a pair of Unified Access Gateways in an Azure Virtual Machine Scale Set behind an Azure Load Balancer assigned a public IP address. The Unified Access Gateways provide secure external access from a demilitarised zone (DMZ) subnet and directs authenticated requests accordingly. The public load balancer IP address is visible from the Horizon Cloud management portal and will need adding with the FQDN to a public DNS zone. A certificate matching the FQDN is uploaded in PEM format during the UAG deployment wizard.

A further Azure Load Balancer with a private IP address is automatically deployed with an Azure Virtual Machine Scale Set for the pod’s manager instances into a management subnet. The manager IP address is also visible from the Horizon Cloud portal and will need adding with the FQDN to a private DNS zone. A certificate chain matching the internal load balancer FQDN and DNS resolution is necessary if integrating Horizon with Workspace ONE, you can read more in the Overview of Configuring SSL Certificates on the Horizon Cloud Pod’s Manager VMs documentation.

The gold image(s) and virtual desktop pools are deployed and managed from the Horizon Cloud portal and use a dedicated private tenant subnet. Each of the components mentioned is provisioned to the customer’s Azure subscription organised in Azure Resource Groups with the supporting resources such as databases, Key Vaults, disks, Storage Accounts, network interfaces, and Network Security Groups.

Workspace ONE and True SSO

Each pod deployment in the example design can serve up to 2000 virtual desktops and can scale out to multiple pods across additional regions to provide extra capacity and resilience. Using Workspace ONE with Horizon Cloud enables a single URL for all users to access regardless of where their virtual desktop is located. Workspace ONE Access, formerly VMware Identity Manager, adds a further layer of security with Multi-Factor Authentication (MFA).

To allow for Single-Sign-On (SSO), VMware’s True SSO needs to be used. True SSO removes the need to enter the username and password more than once while accessing virtual desktops and published applications. True SSO comes with an additional set of requirements which you should review in full before starting along with the Integrate a Horizon Cloud Pod in Microsoft Azure with Workspace ONE Access documentation. At a high-level Active Directory (AD) with DNS and an enterprise Certificate Authority (CA) are needed. If you are deploying a greenfield environment, without an existing federated Azure Active Directory (AAD), then you may need to manually install Active Directory Domain Services on Virtual Machines in the Azure subscription as portrayed in the example design above. Azure Active Directory Domain Services (AAD DS) cannot be used with an enterprise CA at the time of writing which is a requirement for True SSO. Configuration of Workspace ONE and True SSO is beyond the scope of this document, but it is recognised as a component in the overall design.

Workspace-One-Verify

Azure Pre-Requisites

Review the VMware Horizon Cloud Service on Microsoft Azure Requirements Checklist. Before Horizon pod deployment, you will need to configure the following Azure resources:

  • Azure subscription with available capacity
  • The following resource providers registered in each Azure subscription:
    • microsoft.authorization, microsoft.keyvault, microsoft.storage, microsoft.sql, microsoft.dbforpostgresql, microsoft.insights (registers automatically when a service using insights is deployed)
  • Azure Active Directory (AAD) App registration (service principal) with an authentication key for each subscription
    • You will need the Subscription ID, Directory ID, Application ID and key to hand
  • Contributor role assigned to the subscription access control (IAM) for the above service principal
  • A VNet created with the Microsoft.Sql service endpoint enabled, DNS configured, internet access, and 3 non-overlapping address ranges (subnets can be added in advance or at pod deployment)
    • Management subnet, minimum /27
    • Tenant subnet, minimum /27 up to /21 based on the number of virtual desktops
    • DMZ subnet, minimum /28
  • Any required VNet peering should be in place for line of sight Active Directory access, and optional Express Route or VPN for on-premises connectivity

    Horizon Pod Deployment

    Access to Horizon Cloud is provided through email invite via your VMware representative. After logging in the first step is to add pod capacity, the Getting Started page defaults to the Capacity section. Next to Microsoft Azure click Add.

    The Add Microsoft Azure Capacity wizard opens. Follow the instructions to associate the Horizon Cloud control plane with the Azure subscription, using the Subscription ID, and the Azure AD (AAD) App Registration, using the Directory ID with the Application ID and Key for the service principal created during the pre-requisite configuration.

    Horizon-Cloud-Capacity-1

    In the Pod Setup page, configure the pod details. Enter the network settings, including the VNet and subnets to use as discussed in the design section above.

    Horizon-Cloud-Capacity-2

    Configure the external Unified Access Gateways (UAGs) with the public FQDN and the DMZ subnet. Upload the certificate to be applied to both UAGs in PEM format, the certificate must use the FQN specified in this page and must be signed by a trusted Certificate Authority.

    Horizon-Cloud-Capacity-3

    If the pod and gateway configurations validate successfully, then review the summary details and click submit to begin the pod deployment.

    Horizon-Cloud-Capacity-4

    The screenshot below shows the completed post-setup dashboard. In this instance, 3 pods for Azure capacity have been configured.

    Horizon-Cloud-UI

    After adding capacity to Horizon Cloud, the next step is to configure Active Directory. Review in full the Horizon Cloud service accounts requirements before starting. If you are using a third-party identity source, validate the permissions outlined are acceptable, along with the enterprise CA requirement mentioned above. Cross-check with the Active Directory Requirements section of the VMware Horizon Cloud Service on Microsoft Azure Requirements Checklist.

    Click Configure next to Active Directory to register your domain, add the domain bind and domain join accounts, and define the AD group for Horizon Cloud administrators. After applying the Active Directory configuration, you will need to log back into the portal with a domain account with Horizon Cloud administrative permissions, as well as your My VMware account. You can configure additional My VMware accounts under Settings and then General Settings.

    Publish a Horizon Desktop Image

    With Active Directory configured, we can go ahead and add the first gold image. As an optional configuration item, you can specify the allowed Virtual Machine types for deployments under Settings and then VM Types & Sizes.

    Images can be uploaded or imported from the Azure Marketplace under Inventory and Imported VMs. When you select an image from the Marketplace choose an OS and configure settings like domain join, and Horizon Agent features such as Smart Card / USB redirection, etc. You can enable a public IP address to access the image over RDP, or you can use the Azure Portal (Bastion) to apply software and configuration to the base build. During the import process, Horizon Cloud enables the RDS role, automates the agent installation, and performs a bootstrap process to securely pair the agent and the Horizon Cloud pod.

    Horizon-Cloud-Import-VM

    Click Import, after a few minutes the image Status changes to green and the Agent Status Active. With the image imported, you can carry out any customisations required to the base build. When complete, select the image and from the More drop-down menu click Convert to image. The build is now converted to an image, Horizon runs sysprep for you, seals the OS, and publishes to the Images section.

    This example is using a single gold image, but you can use multiple images and farms to publish many desktops and applications to end-users. The final step is to configure a new Desktop Assignment enabling users to deploy the image from Horizon Cloud. Click Assignments and New then select Desktops. Choose floating or dedicated desktop types and fill in the fixed attributes, fixed attributes on the assignment cannot be changed after publishing. Complete the flexible attributes, such as minimum and a maximum number of desktops, and machine prefix. Flexible attributes can be updated later.

    Horizon-Cloud-Desktop-Assignment

    Virtual desktops are powered off and deallocated when they are not being used to balance infrastructure costs. You can configure power off protect timings or add power management schedules. On the Users page add the Active Directory users or user groups that will have access to the desktop pool. After the Assignment is created and online it is available for use.

    Horizon-Cloud-Created-Assignment

    Users given access to the Assignment can now log in direct to the public FQDN for the pod.

    Horizon-Splash-Screen

    Entitled images and applications are shown in the Horizon client.

    Horizon-Desktops

    Back in the Horizon Cloud admin portal the dashboard and reports functionality can be used for general monitoring of the service. At the time of writing, there is no syslog forwarding feature available from the Horizon Cloud portal. Automation of report downloads in CSV format can be scripted, or an agent used on the image build itself, such as a Splunk forwarder.

    Horizon-Cloud-Dashboard

    Here are some additional gotchas found at the time of deployment. These are expected to be fixed in future releases.

    • Communicating with the internal IP address of a basic Azure Load Balancer across regions with VNet peering is not supported, a standard Azure Load Balancer is needed. At the time of writing the Horizon Cloud pod deployment uses basic load balancers for the internal manager VMs.
    • When applying a certificate to the internal load balancer for the manager VMs to facilitate Workspace ONE integration at the time of writing a common name in the certificate will be ignored if Subject Alternative Names (SANs) are present. All pods should be added as SANs.

    Useful Documentation

    Hands-on:

    Understand VMware Tanzu, Pacific, and Kubernetes for VMware Administrators

    This post was last updated 26/10/2019 and provides an overview of VMware Tanzu and Project Pacific.

    Peanut Butter & Jelly VMware and Kubernetes

    There will be more apps deployed in the next 5 years than in the last 40 years (source: Introducing Project Pacific: Transforming vSphere into the App Platform of the Future). The VMware strategy of late has seen a significant shift towards cloud-agnostic software and the integration of cloud-native application development. In November 2018 VMware announced the Acquisition of Heptio to help accelerate enterprise adoption of Kubernetes on-premise and across multi-cloud environments. In May and August, 2019 VMware announced its intent to Acquire Bitnami and Pivotal Software, following the successful launch of Pivotal Container Service (PKS) which was later re-branded VMware Enterprise PKS.

    To help better address application support complexities between development and operations teams, VMware has now announced VMware Tanzu:

    “In Swahili, ’tanzu’ means the growing branch of a tree. In Japanese, ’tansu’ refers to a modular form of cabinetry. At VMware, Tanzu represents our growing portfolio of solutions to help you build, run and manage modern apps.”

    VMware Tanzu is a portfolio of capabilities that empowers cloud-native development by enabling build, run, and manage operations across platforms. Using VMware Tanzu Mission Control Kubernetes clusters can be created and managed from a single control point.

    Another key announcement alongside VMware Tanzu was code-named Project Pacific; enabling IT operators and developers to build and run modern applications with VMware vSphere and native Kubernetes. Project Pacific is focused on re-architecting vSphere for Kubernetes containers to run alongside VMware Virtual Machines (VMs) in ESXi, enabling the development of portable cloud-native applications and micro-services, while protecting existing investments in products and skills. You can review the press release of all products in the VMware Tanzu portfolio here, and the split of build, run, manage products here.

    Introduction to Kubernetes

    Kubernetes is an open-source orchestration and management tool that provides a simple Application Programming Interface (API), exposing a set of capabilities for defining workloads and services. Kubernetes enables containers to run and operate in a production-ready environment at an enterprise scale by managing and automating resource utilisation, failure handling, availability, configuration, scale, and desired state. Micro-services can be rapidly published, maintained, and updated.

    Kubernetes managed containers and containers package applications and their dependencies into a distributed image that can run almost anywhere, simplifying application path to live. Kubernetes makes it easier to run applications across multiple cloud platforms, accelerates application development and deployment, increases agility, flexibility, and the ability to adapt to change.

    For VMware administrators with little exposure to DevOps, the following high-level resources can help set a foundation understanding of Kubernetes, and why VMware are making some of these critical changes in architecture and strategy. You can try Kubernetes for yourself using the Kubernetes Academy by VMware, or a Kind Way to Learn Kubernetes.

    Kubernetes for Executives: “Containers encapsulate an application in a form that’s portable and easy to deploy. Containers can run on any compatible system—in any
    cloud—without changes. Containers consume resources efficiently, enabling high density and utilization. Kubernetes makes it possible to deploy and run complex applications requiring multiple containers by clustering physical or virtual resources for application hosting. Kubernetes is extensible, self-healing, scales applications automatically, and is inherently multi-cloud.”

     

    Introduction to Project Pacific (Run)

    Kubernetes uses a cluster of nodes to distribute container instances. The master node is the management plane containing the API server and scheduling capabilities. Worker nodes make up the control plane and act as compute resources for running workloads (known as pods). VMware has re-designed vSphere to include a Kubernetes control plane for managing Kubernetes workloads on ESXi hosts. The control plane is made up of a supervisor cluster using ESXi as the worker nodes, allowing workloads or pods to be deployed and run natively in the hypervisor, along with side traditional Virtual Machine workloads. This new functionality is provided by a new container runtime built into ESXi called CRX. CRX optimises the Linux kernel and hypervisor and strips some of the traditional heavy config of a Virtual Machine enabling the binary image and executable code to be quickly loaded and booted. The container runtime produces some of the performance benchmarks VMware have been publishing, such as improvements even over bare metal, in combination with ESXi’s powerful scheduler.

    To ensure containers are running in pods, an agent called a Kubelet runs on Kubernetes cluster nodes. With the supervisor cluster, the role of the Kubelet agent is handled by a new ‘Spherelet’ running on each ESXi host. Pods are created on a network internal to the Kubernetes nodes. By default, pods cannot talk to each other across the cluster of nodes unless a Service is created. A Service in Kubernetes allows a group of pods to be exposed by a common IP address, helping define network routing and load balancing policies without having to understand the IP addressing of individual pods.

    Another of the great features of Kubernetes is namespaces. Namespaces are commonly used to provide multi-tenancy across applications or users, and to manage resource quotas (backed in this instance by vSphere Resource Pools). Kubernetes namespaces segment resources for large teams working on a single Kubernetes cluster. Resources can have the same name as long as they belong to different namespaces, think of them as sub-domains and the Kubernetes cluster as the root domain the namespace gets attached to. Multiple namespaces can exist within the supervisor cluster, with different storage policies assigned to them, for persistent storage, etc.

    Kubernetes can be accessed through a GUI known as the Kubernetes dashboard, or through a command-line tool called kubectl. Both query the Kubernetes API server to get or manage the state of various resources like pods, deployments, and services. Labels assigned to pods can be used to look up pods belonging to the same application, tier, or service. With Project Pacific; developers use Kubernetes APIs to access the Software-Defined Data Centre (SDDC) and ultimately consume Kubernetes clusters as a service using the same application deployment tools they use currently. This service is delivered by Infrastructure Operations teams using existing vSphere tools, with the flexibility of running Kubernetes workloads and Virtual Machine workloads side by side.

    By applying application-focused management Project Pacific allows application-level control over policies, quota, and role-based access for Developers. Service features provided by vSphere such as High Availability (HA), Distributed Resource Scheduler (DRS) and vMotion can be applied at application level across Virtual Machines and containers. Unified visibility in vCenter for Kubernetes clusters, containers, and existing Virtual Machines is provided for a consistent view between Developers and Infrastructure Operations alike.

    The following resources provide further reading on Project Pacific for enabling Kubernetes on vSphere.

    Project_Pacific

    Introduction to VMware Tanzu Mission Control (Manage)

    VMware Tanzu Mission Control brings together Kubernetes clusters providing operator consistency for deployment, configuration, security, and policy enforcement across multiple clouds while maintaining developer independence and self-service.

    VMware Tanzu Mission Control is a Software as a Service (SaaS) control plane offering allowing administrators to deploy, monitor, and manage ALL Kubernetes clusters from a single point of control. The beauty of this approach is that lifecycle management, access management, health and diagnostics, security and configuration policies, quota management, and backup or restore capabilities are all consolidated into a single toolset.  Kubernetes clusters running on vSphere, VMware Enterprise or Essential PKS, Public Cloud (AWS, Microsoft Azure, Google Cloud Platform), and managed services or other implementations can all be attached to VMware Tanzu Mission Control. New Kubernetes clusters can also be deployed to all of these platforms from the Tanzu Mission Control interface.

    For more information on VMware Tanzu Mission Control, see the product page here, and Introducing VMware Tanzu Mission Control to Bring Order to Cluster Chaos. If you are attending VMworld Europe 2019 have a look through VMware Tanzu Sessions in the content catalog and also Explore Kubernetes at VMworld 2019. At the time of writing VMware Tanzu and Project Pacific are in tech preview, this post will be updated when more information is released. Please use the comments section below if you feel any key elements are missing or not explained clearly. There are some additional useful video tutorials available from the Project Pacific at Tech Field Day Extra at VMworld 2019,

     

    Veeam Backup Error: Out of the Vector Bound

    When running a backup job using Veeam Backup & Replication v8 or v9 the job fails with Error: Out of the vector bound. Record index: [0]. Vector Size: [1] Job finished with error. Running an active full produces the same result. In our case this issue was caused by corruption to the metadata file. This can occur when the metadata file is not properly closed and breaks the chain, potentially down to a file system filling up, or server failure.

    To resolve we start a new chain to re-create both full data and metadata. This is done by cleanly deleting records about the backup job from the Veeam Backup & Replication console and configuration database, and deleting backup files themselves from the destination storage. The job itself remains so does not need recreating.

    • First disable the job; open the Veeam Backup & Replication client. Ensure Backup & Replication is selected on the task pane on the left hand side and select Jobs. Right click the failed job and click Disable.

    veeamfix1

    • Next we need to remove the corrupted files.  Still in the Backup & Replication task pane select Backups. Right click the failed job and click Delete from disk to remove the backup files and records.

    veeamfix2

    • Now go back to the Jobs page and enable the job. Run an Active Full to create new data and metadata files.

    veeamfix3